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ABSTRACT 

This paper describes a general-purpose stored program digital computer 
being developed by members of the Space Electronics Branch for use on scien- 
tific spacecraft. The computer, called the on-board processor (OBP), has been 
designed to meet the objectives of multimission applicability, increased experi- 
ment capability, and simplified software construction with reliability being em- 
phasized at both the system and component levels. This report includes a 
description of the processor's grammatically structured machine language 
together with a delineation of the central processing unit, input/output philosophy, 
and modular memory. Proposed circuitry and packaging techniques for both the 
engineering model and flight systems are presented. 
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I 

I NTROD UC TI0 N 

Traditionally, spacecraft data-handling systems have performed a minimum 
of on-board data processing and have returned all experiment data for analysis 
by the experimenter. Space scientists have been reluctant to discard data before 
transmittal to the ground on the basis of cri teria established before launch and 
have been unable for the most part to adjust their information-gathering appa- 
ratus to meet the situations encountered without compromising reliability with 
complex flight hardware. At  present, many arguments exist for developing 
more extensive on-board data-processing techniques. The advent of micro- 
electronics and the expense of ground-processing the enormous volume of 
data being returned from space have given considerable impetus to the idea of 
flying systems capable of reducing the data to be transmitted to "information" 
in the true sense of the word. Further, as various phenomena are investigated 
in more and more detail, increasingly more discriminating measurements must 
be transmitted within the bandwidth constraints imposed by spacecraft communi- 
cations systems. The use of such devices as logarithmic counters by individual 
experiments has aided this data-transmitting effort to some extent, but the fact 
remains that the capacity of present spacecraft communications systems has 
been reached. 

To circumvent this "information return impasse", the Space Electronics 
Branch is developing an on-board data-processing system in the form of a com- 
puter which will service individual experiment and spacecraft sensors to provide 
a more efficient data stream through data compression and the optimization of 
the data format. Since the computer can be reprogrammed and has a large com- 
putational capacity, any degree of on-board processing can be performed by re- 
programming from the ground after launch. In this way a spacecraft can be 
launched with a simple data format and, as the characteristics of the phenom- 
ena and the behavior of the instruments in orbit are ascertained, additional 
degrees of data processing can be implemented. 

This computer will be able to control the sampling and formatting of telem- 
etry data, provide data storage, and perform lengthy and sophisticated computa- 
tions for use in processing experiment, attitude control, and other spacecraft 
signals. The computer memory will also provide storage for commands to be 
acted upon after specified time intervals or upon certain inputs from the space- 
craft subsystems and/or experiments. In addition, applying this on-board com- 
puter to prelaunch and postlaunch checkout of the spacecraft and experiments 
should greatly increase the effectiveness of those phases of spacecraft operations. 
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GENERAL DESCRIPTION 

The on-board processor is being developed specifically for space applica- 
tion. The system is modular and consists, in a minimum configuration, of one 
central processor unit (CPU), one memory unit, and one input/output (I/O) unit, 
all connected to  a common data bus. The interface circuits will be designed so 
that the data bus will be impervious to a significantly probable single compo- 
nent failure in an input or output circuit. 

A C P U  will be composed of about 1200 microcircuits and will dissipate 
approximately 3 watts of power. The unit is organized as an 18-bit parallel 
binary machine with a 7.5 psec add time, one full-length index register, and 
hardware multiply/divide. Each memory module will have 8192 18-bit words. 
Power dissipation by the memory will be proportional to  usage, with close to 
5 watts for continuous access and about 0.75 watt required for standby opera- 
tion. The addition of up to eight memory modules, giving a storage capacity of 
65,536 18-bit words, requires very little additional power. The complexity and 
size of the 1/0 unit will depend entirely upon mission requirements because an 
1/0 unit will be specifically tailored for each mission. However, if no analog 
to digital conversion is required, an 1/0 unit should not exceed the C P U  in size 
o r  power requirements. 

The memory module and CPU will each have approximate dimensions of 3 
by 6 by 1 0  inches. Thus a minimum system of one CPU, one 8K memory unit, 
and one 1/0 unit would occupy about 540 cubic inches and would dissipate from 
6 to 14 watts of power, depending upon memory usage. The capability and reli- 
ability of the system can be expanded by adding more memory and a standby 
CPU to be switched into service upon failure in the first CPU. It is significant 
that this more reliable system with increased capabilities (e.g., 65K memory 
and redundant CPU's) would still operate on about 15 watts of power and would 
be only 1 0  by 12 by 15 inches in size. 

The Space Electronics Branch has the overall responsibility for the proc- 
essor development effort. The engineering model of the C P U  is being fabri- 
cated by Westinghouse Defense and Space Center, Aerospace Division under 
Goddard contract. General Precision, Inc., Librascope Group is responsible 
for the memory. The Space Electronics Branch is developing a general I/O. 
It is expected that these units will be operating a s  a system early in 1968. 
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OBJECTIVES 

Design 

In developing the spacecraft computer, several basic goals have been set. 
One major objective is to ensure that the computer will have multimission ap- 
plicability. In other words, it will not be designed for a special mission but 
rather with the ability to adapt to large o r  small missions. This requirement 
will be met by defining the 1/0 interface between the C P U  and the 1/0 box, and 
then tailoring the box for a specific mission. The C P U  will have high-speed 
computational capability so that lengthy operations such as statistical analyses 
will be possible. Thus, through the use of such on-board data processing, a 
second major objective, that of increased experiment capability, can be met. 

A third major design objective is the development of a software system 
which will, by its simplicity, allow efficient user program construction and de- 
bugging. To facilitate programming and to enable the program to be somewhat 
self-documenting, the basic machine language is grammatically structured re- 
stricted English. The instruction set is such that software simulators can be 
easily implemented on existing general-purpose stored-program computers. A 
comprehensive executive system will maintain control over subprograms , main- 
tain interrupt priority, and automatically check, through a real-time clock in- 
terrupt, to ensure recovery from problem areas such as  infinite loop execution. 

Reliabilitv 

Ultra-reliable is a necessary description for a system of this sort which, 
for many applications, will be operating in an environment untenable by man. 
Reliability is being emphasized in the design of the processor at both the sys- 
tem and component levels. 

At the system level, the modular organization enables reliability to be en- 
hanced by the ease with which redundant functional subsystems may be inter- 
connected. Figure 1 is a configuration of multiple memory, central processor, 
and 1/0 units. For such a system, any number of spare modules may be nor- 
mally connected and powered on by ground command as  failures occur in op- 
erating modules. For example, switching power from a malfunctioning memory 
to a spare, preloaded with the operational program, would result in 100 percent 
system repair. 

Steps taken to assure maximum reliability at the component level are: 

0 Maximum use is made of monolithic integrated circuits. 
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All  circuit components will operate well below rated values to mini- 
mize failures due to electrical stresses. 

Only tried and proven reliable circuit techniques and components will 
be used. 

All  active elements will be burned in, to detect early failures and to 
minimize drift due to aging. 

The number of electrical connections will be minimal with all internal 
connections either welded o r  soldered. 

All  electronic subassemblies, including the memory planes, will be 
encapsulated. 

MEMORY L 

1 A 

I/O I/O 
MEMORY c PU c PU CYCLE CYCLE --- 

STEAL STEAL 
_-- 

t 4 

INITIALIZATION OF 
DATA BLOCKS 

I/O 
PROGRAM CONTROL 

PROGRAM 
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Figure 1. On-Board Processor, Functional Block Diagram 

CENTRAL PROCESSOR UNIT 

The central processor of the on-board computer employs a fully parallel 
adder and parallel data transfers between registers and at the CPU-1/0 inter- 
face. Data words and instructions a re  18 bits in length with negative numbers 
being represented in two’s complement form. Addressable hardware registers 
include a 16-bit subscript register, an 18-bit accumulator, an 18-bit extension 
of the accumulator, a 4-bit memory page register, an 18-bit storage limit reg- 
ister which specifies read-only sections of memory, and a 6-bit scale register 
which represents the location of the binary point in fixed point data words. Fig- 
ure 2 is a block diagram of the CPU. 

4 



I- I I 1 
I 
I 
I 

I 
I 

I- 

I 
I 

I- 
I 
I 
I 
I 
I 
I 

U 

a 
C 

C 
lY 
U 

f 

E 
o 

m 
c .- 
c 
3 
L 
0 
In 
In 

t 

5 



An instruction has three fields and is formatted as follows: 

J 

12- bi: noun 
v-\ 

5-bi t l -b i  t 
verb sub- 

script 

At this stage of development, there a re  47 instructions, 30 of which require 
an operand fetch. The other 1 7  instructions have a minor operation code in the 
address field of the instruction word. With 1 2  bits of address available, 4096 
memory words a re  directly addressable. Memory size as  large as 65,536 words 
requires a 4-bit page register which can be loaded and stored under program 
control and which is appended a s  four high-order bits to the 12-bit address field 
to form a full 16-bit address. If the subscript bit is set, a 16-bit subscript reg- 
ister is added to the address to form an effective address. All  transfers a re  
indirect, whereas all operand fetches a re  direct. The 18-bit storage limit reg- 
ister essentially reserves blocks in memory, each containing 128 words, that 
can be written into under program control. To implement this feature, the 
limit register is partitioned into two 9-bit fields. The first field specifies cer- 
tain bits in the second field which must coincide with the nine high-order bits 
of the effective address for instructions which modify memory contents. 

The C P U  contains a 6-bit scale register which can be loaded and stored 
under program control. This register is used to maintain the binary point as- 
sociated with numerical quantities at a program-controlled position for multi- 
ply and divide operations, thus freeing the programmer from this chore without 
sacrificing accuracy as  would be the case with floating point operations. The 
processor also employs an addressable 18-bit extended accumulator, EA, which 
contains the remainder following a division (the quotient is contained in the ac- 
cumulator) or  the low-order 17 bits, plus sign, of a 34-bit product after a 
multiply operation. The 36-bit accumulator/EA is .automatically shifted before 
a divide and after a multiply, with the shift length determined by the contents of 
the scale register. For most operations, the programmer will be concerned 
with the accumulator only; however, for those instances where direct control of 
the EA is desirable, e.g., double precision operations, instructions are  available 
which allow extended accumulator loading from and storing into memory loca- 
tions directly. For the most part, a programmer can view the machine as hav- 
ing only one 18-bit arithmetic register. Standard fractional arithmetic is pos- 
sible by setting the scale register to-zero and standard integer arithmetic is 
accomplished by making the scale register equal to 17. 
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Table 1 lists the functional registers. 

Table 1 
Central Processor Unit Functional Registers 

Register 

Memory operand 

Memory address 

Instruction 

Instruction counter 

Subscript (index) 

Storage limit 

Page 

Accumulator 

Extended accumulator 

Scale 

Overflow 

Carry 

Decision 

Or/and 

Symbol 

MOR 

MA 

IR 

IC 

ss 
SL 

P 

A 

EA 

sc 
ov 
C 

D 

O/A 

GRAMMATICAL MACHINE LANGUAGE 

Machine Language Features 

Length (bits) 

18 

16 

18 

16 

16 

18 

4 

18 

18 

6 

1 

1 

1 

1 

The grammatically structured machine language of the OBP was originally 
conceived by T. P. Gorman of the Telemetry Computation Branch, GSFC. 
Its main features are: 

0 

0 

Rules of programming are  the rules of grammatical English. 

Vocabulary is restricted to the use of a limited number of phrases 
which either connect nouns or  stand alone. 
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Phrases correspond one for one with machine instructions. 

Nouns a re  the names of quantities or  the names of operation sequences 
(e.g., subroutines) used in the course of a program. 

Numbers, octal or  decimal, may be used directly to represent numeric 
quantities . 
All transfers are indirect for simple program relocation. 

User may insert punctuation as desired to make text readable. 

Programs are  written in f ree  (paragraph) form; additional comments 
may be entered parenthetically within the text, thereby making the pro- 
gram self-documenting. 

A memory protect feature prevents modification of instructions. Only 
nouns a re  modifiable. Subroutine return addresses are stored as 
though they were nouns. Therefore, once a program is loaded into 
memory, only data quantities will change and debugging is considerably 
simplified . 

Instruction Set Description 

In the following description, parentheses indicate the contents of the mem- 
ory location or  register, which they surround. For example, (M) reads "the 
contents of memory location M." See Table 1 (page 7) for register definition. 

ACCUMULATOR 

1. let M 
if M 

2. let location M 

3. yield M 

4. set EA with M 

5. save EA in M 

6. close EA with D 

Load A with (M). 

Load A with M. 

Store (A) in M. 

Load EA with (M). 

Store (EA) in M. 

Shift (A) and (EA) left one bit and put 
(D) in the least significant bit of EA. 
Shifting is around the sign bit of EA 
and through the sign bit of A with OV 
being set if the sign of A is changed 
in the process. 
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SUBSCRIPT REGISTER 

7. use subscript M 

8. save subscript in M 

9. step subscript by M 

10. if subscript not greater than M 

ARITHMETIC 

11. plus M 

12. plus carry 

13. minus M 

14. times M 

15. over M 

LOGICAL 

16. anded with M 

17. oredwithM 

18. eored with M 

19. complemented 

20. negated 

BIT MANIPULATION 

21. shifted by M 

Load S S  with (M). 

Store ( S S )  in M. 

Add (M) to ( S S ) .  

If (SS) I (M), set D = 1. If not, leave D 
unchanged. 

Set (C) to zero. Add (M) to (A). 

If the previous arithmetic operation 
resulted in a carry from the most 
significant bit of A, setting (C) to 1, set 
(C) to zero and add 1 to (A). 

Set (C) to zero. Subtract (M) from (A). 

Multiply (A) by (M) and position the 34- 
bit product plus sign in A, EA so as to 
maintain the binary point as indicated 
by (SC). In positioning, all shifting is 
around the sign bit of EA. 

Divide (A), (EA) by (M) and put the 
quotient in A and the remainder in EA, 
maintaining the binary point of both as 
indicated by (SC). As  the dividend (A), 
(EA) are treated as a single 34-bit 
quantity plus sign with the sign bit of 
EA ignored. 

Logically t'ANDft (M) with (A). 

Logically "OR" (M) with (A). 

Logically rrEOR" (M) with (A). 

Replace (A) with its 1's complement. 

Set (C) to zero. Replace (A) with its 
2's complement. 

Shift (A) by (M)-bits, left for  positive 
(M), and right for negative. Bits shift 
left through the sign bit of A, but when 
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21. shifted by M (continued) 

22. double shifted by M 

23. cycled by M 

24. double cycled by M 

25. normalized 

a bit different in value from the orig- 
inal sign shifts into the sign position, 
OV is set. On right shift, the sign bit 
is copied into the vacated bit positions. 

Shift (A) and (EA) by (M)-bits, left for 
positive (M), and right for negative. 
Bits shift left through the sign bit of A 
and around the sign bit of EA. If a bit 
different in value from the original 
sign bit of A shifts into the sign posi- 
tion of A ,  OV is set. On right shift, 
the sign bit of A is copied into the va- 
cated bit positions. Again, bits shift 
around the sign bit of EA. 

Cycle (A) by (M)-bits, left for positive 
(M), and right for negative. A cycles 
onto itself and no bits a re  lost. 

Cycle (A) and (EA) by (M)-bits, left for 
positive (M) and right for negative. 
(A), (EA) are  connected a s  a single 
36-bit register which cycles onto it- 
self and no bits are  lost. 

Clear SC. If (A), (EA) = 0,  do nothing. 
If (A), EA # 0, shift (A), (EA) left until 
bit 18 # bit 1 7  of A, and put the number 
of positions shifted into SC. Shifting 
is around the sign bit of EA. 

TEST 

26. is less than M 

27. is equal to M 

28. is greater than M 

29. is positive 
if positive 

If (A) < (M), set (D) = 1. If not, leave 
(D) unchanged. 

If (A) = (M), set (D) = 1. If not, leave 
(D) unchanged. 

If (A) > (M), set (D) = 1. If not, leave 
(D) unchanged. 

If sign bit of A = 0, set (D) = 1. If not, 
leave (D) unchanged. 
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30. if overflow 

31. if parity odd 

32. is false 

33. and 

34. o r  

TRANSFER 

35. then go to M 

36. go to  M 
return to M 

37. transformed by M 

CONTROL 

38. pass  

39. halt 

40. execute M 

MISCELLANEOUS REGISTERS 

41. set scale with M 

42. let scale 

43. set page 

44. reset OV 

If (OV) = 1, set (D) = 1. If not, leave 
(D) unchanged. 

If parity of (A) is odd, set (D) = 1. If 
not, leave (D) unchanged. 

Complement (D) . 
"AND" present state of D with next 
test result. 

"OR" present state of D with next test 
result . 

If (D) = 1, branch to (M) and set (D) =O. 
If (D) = 0, continue. 

Branch to (M). 

This is the subroutine call. Store (IC) 
plus 1 in M ;  go to (M + 1).  

No operation, 

Halt. 

Execute (M) as an instruction. Add 1 
to (IC). 

Load SC with the six least significant 
bits of M. 

Load the six least significant bits of A 
with (SC). The other 12 bits of A a re  
set to zero. 

Load P withfour leas t  significant bits of A. 

Make (OV) = 0. 

11 



INTERRUPT 

45. exit 

46. resume from M 

INPUT/OUTPUT 

47. output to M* 
let input from M* 
if 1/0 status of M* 

connect to M* 

ASSEMBLER DIRECTIVES 

1. subscripted 

2. it 

3. be 

This instruction causes a program- 
controlled interrupt. The page, in- 
struction counter, scale, storage limit, 
interrupt priority status, C, OV, D, 
and OA registers contents a re  saved 
in four consecutive memory locations. 
The next four locations set the above 
registers to the status desired. 

This instruction terminates each in- 
terrupt routine. The previous regis- 
ter status is restored from the first 
four locations of the interrupt under 
execution. 

(A) are  output as  data to the 1/0 unit. 
The 1/0 unit loads one data word into A. 
The 1/0 unit loads one status word 
into A and sets up for a test. 
(A) are  output as a memory address 
to the 1/0 unit. 

Add (SS) to the address of the noun 
which follows to form the effective 
address for the present operation. 

This is a dummy operand used with 
LET and IF to initiate an operation 
without altering the accumulator. 

This is used alone or  with certain 
verbal phrases to close a sentence 
(i.e., end an operation sequence) 
leaving the result in A. 

4. allocate N locations for M Reserve N locations of storage for 
array M. 

~ 

*Memory location M contains a function code which defines the 1/0 channel activity. 
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5. defining M 

6.  assign M to location N 

7. preset M to N 

Assign an address to M indicating a 
position in the instruction sequence. 

Assign the fixed octal location N as  
the address of M. 

Preset the constant M to the value N, 
where N may be octal o r  decimal. 

Sample Programs 

The following program computes the sum of the squares of 100 numbers: 

START THE FOLLOWING PROGRAM AT LOCATION 1000. ALLO- 
CATE 100 LOCATIONS FOR NUMBERS. (INITIALIZATION) LET 0 
YIELD SUM. USE SUBSCRIPT 0. 
DEFIMNG LOOP START, LET SUBSCRIPTED NUMBERS TIMES 
SUBSCRIPTED NUMBERS PLUS SUM YIELD SUM. STEP SUB- 
SCRIPT BY 1. IF SUBSCRIPT IS NOT GREATER THAN 99, GO TO 
LOOP START. 

It is assumed above that the array, NUMBERS, has data inserted before 
this program is executed. 

The following program computes the sine of an angle (in radians) by sum- 
ming terms of the Taylor series until 10 terms have been used or  the next term 
is less  in absolute value than a fixed number, EPSILON, whichever comes first. 

DEFINING SINE, LET 1 YIELD N. LET 0 YIELD SINX. LET X 
YIELD TERM. DEFINING LOOP, LET SINX PLUS TERM YIELD 
SINX. LET N PLUS 1 YIELD PARTNO. LET IT PLUS 1 YIELD N. 
LET IT TIMES PARTNO YIELD NUMBER. LET TERM TIMES X 
TIMES X DIVIDED BY NUMBER NEGATED YIELD TERM. IF 
TERM IS GREATER THAN EPSILON OR IF TERM NEGATED IS 
GREATER THAN EPSILON AND IF N IS LESS THAN 10, THEN GO 
TO LOOP. 
HALT. 

Among other things, this illustrates the comparative ease with which a loop 
may be terminated conditionally, depending on the value of a complicated logical 
statement. 

13 



INPUT/OUTPUT UNIT 

Design objectives require that the on-board processor be applicable to a 
variety of scientific spacecraft programs. To be successful in this approach, 
a general and versatile technique for data transfer and interrupt processing 
must be developed. The intention is to tailor the computer's 1/0 scheme to 
accommodate a particular mission's individual and perhaps unique require- 
ments, with little o r  no impact on the C P U  and memory unit design. 

With this objective in mind, the system design has been established to 
provide : 

0 Data transfer external to program,execution (called the cycle steal 
mode) 

0 Data transfer completely under program control 

In the first method, the 1/0 time shares the memory with the CPU, allow- 
ing continuous data input without interrupting CPU processing. The second, 
program-controlled data transfer, may be requested in two ways. The faster 
is to interrupt the program. Whenever an interrupt occurs, the processor 
(upon completion of the current instruction) leaves the program it is proc- 
essing, goes to the routine associated with that particular interrupt, and there 
executes the appropriate input instructions. After the routine has been com- 
pleted the processor returns to the original program. A slower type of 
program-controlled data transfer is one in which the processor periodically 
scans a register to determine if an input/output request has occurred. If so, 
the processor acts on the particular request according to its priority. This 
type of data transfer is feasible when instruction execution rates a re  fast  com- 
pared to the input data rates. 

Data Transfer Operation 

Execution of the input/output instruction (instruction 47) will activate ei- 
ther a data output, a data input, a status word entry, or  the initiation of a chan- 
nel in the cycle steal mode. The 1/0 control system makes use of the contents 
of address M and the C P U  accumulator to control which channel activity will 
take place. If a data transfer is to occur, (hI) are  interpreted by the 1/0 con- 
trol unit and, as appropriate, a single 18-bit data word is transferred by way 
of the CPU accumulator. For initiation of a cycle steal mode, (M) will again 
specify the action and in this case the accumulator contains the starting ad- 
dress  for the data block. In general, the control word addressed by M speci- 
fies channel, block length, function, etc.; however, the exact format will 
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probably vary with each application. It should be noted that for program control 
of data transfers, the accumulator must be loaded prior to an OUTPUT TO M;  
likewise, the program must store the accumulator following a LET INPUT 
FROM M. Timing of 1/0 instruction execution assumes that the peripheral de- 
vice is awaiting the data transfer s o  it is not necessary to implement an auto- 
matic timeout. This approach is acceptable since execution of the instruction 
is a result of an interrupt o r  other program-scanned data request. 

A s  stated, data can be transferred external to program execution by a tech- 
nique of stealing memory cycles. In this case the memory address for each 
block of data transfers is specified by the 1/0 control unit. This feature is im- 
plemented with one counting register to contain a 16-bit address and a second 
counting register containing the block length. These registers may be initialized 
by execution of the CONNECT TO M instruction or from an external source for 
original program loading. For each transfer the block length register is decre- 
mented by 1, and an interrupt is generated when the register count reaches 
zero. 

Interrupt and Data Request Operation 

A peripheral device may request processor attention by interrupting pro- 
gram execution or  by setting a data transfer request line which is scanned peri- 
odically by the program. If the interrupt approach is used, the appropriate 1/0 
instruction is executed as part of the interrupt subroutine. The system will be 
capable of defining up to 64 unique interrupts. For the data-request technique, 
the executive program will periodically input a special 18-bit data word which 
represents previous requests from a set of peripheral devices. Following the 
logical interpretation of this word, an appropriate 1/0 instruction will be exe- 
cuted. 

Interrupt Description-An interrupt may be defined as the action which oc- 
curs when the execution of one program is pre-empted in favor of the execution 
of a second routine. For graceful recovery from an interrupt, the contents of 
all active unaddressable registers must be stored before entering the interrupt 
routine. This storage provides the necessary information for register restora- 
tion when the interrupted program is re-entered. Addressable registers a r e  
stored and entered as necessary in the interrupt subroutine. 

For better understanding, the sequences which occur when entering into and 
exiting from an interrupt subroutine a re  described. Consider that interrupt N 
(0l8 I N I 77, ) has been allowed by the 1/0 unit to signal the processor control. 
Execution of the current instruction is completed, the instruction counter (IC) 
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is stored in NO,, and by special CPU control the unaddressed registers are 
stored in memory locations N1, , N2,, and N3, as shown in Table 2. 

Table 2 
Fixed Memory Location For Interrupt N* 

Memory Address, NX 

N O  

N 1  

N 2  

N 3  

N 4  

N 5  

N 6  

N 7  

Address Contents 

(Instruction Counter) at time of 
interrupt 

(Storage Limit) at time of 
interrupt 

(Scale, Page, O/A, D) at time of 
interrupt 

(Interrupt Lockout Status) at time 
of interrupt 

New Interrupt Lockout Status 

New Scale, Page, O/A, D 

New Storage Limit 

GO TO M 
+N represents the two most significant digits of a three-digit octal number; 

therefore, 0 1 X  2 NX 5 7 7 X  

These same registers are then loaded with new values from fixed locations N4,, 
N5,, and N6,. The interrupt subroutine is then entered by execution of a GO TO 
M instruction located in N7,. Exit from the interrupt is accomplished by a RE- 
SUME instruction, which must be the final instruction in the subroutine. Execu- 
tion of this command causes the contents of N 0, 1, 2, and 3 to be stored in the 
appropriate registers, and re-entry into the original program is accomplished 
as the IC register addresses the next sequential instruction. 

Interrupt Priority-It may be desirable for several reasons to allow a sec- 
ond interrupt to  have precedence over the processing of the first. In other cases 
the converse may be true; consequently, a level of priority must be established. 
This priority can be implemented by selectively locking out the interrupts which 
a re  not to be allowed during the execution of any given routine. Lockout infor- 
mation is dependent upon the program, with the appropriate status word trans- 
mitted to the 1/0 control unit as part of the interrupt entry and exit sequences 
previously described. With this data, the 1/0 unit can maintain control by 
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passing the allowable interrupts and temporarily storing all others until higher 
priority processing is complete. It should be noted that priority levels could be 
hard-wired as  a part of the 1/0 control logic; however, the proposed technique 
provides a means of re-ordering these levels of priority while the spacecraft is 
in orbit. Conceivably, interrupts from a malfunctioning device could be perma- 
nently inhibited by minor reprogramming. 

FLIGHT MEMORY UNIT 

The memory unit is a nondestructive readout woven plated-wire system, 
being developed by General Precision, Inc ., Librascope Group,under Goddard 
contract NAS5-10077. Each memory unit has a data capacity of 8192 18-bit 
words. Total power required is 8.2 watts at a 400 x 10 words/sec write rate 
with power consumption decreasing linearly with duty cycle to less than 0.75 watt 
at standby. It occupies 170 cubic inches in dimensions of 9-1/2 by 6 by 3 inches. 
Properties of this memory system which make i t  ideally suited to requirements 
of the on-board processor are: 

A natural nondestructive readout mode 

Low drive currents (65-ma digit current, 200-ma word current) 

High speed, allowing a duty cycle of less than 0.25 at a 2-psec write 
rate 

Equal word-read and word-write currents, providing a radical reduc- 
tion in selection system complexity 

High output signal and signal-to-noise ratio (at least 10 mv and at 
least 3 : 1, respectively) 

Very simple temperature compensation through the -20 to +80"C 
operating range 

An intrinsically shock- and vibration-resistant woven structure 

Memory Organization 

The spacecraft memory has a stack aspect ratio of 1024 words by 144 bits. 
There are 1024 word lines and four sets of 36 plated-wire digit lines. When a 
word line is pulsed, word current flows through four sets of memory cells cor- 
responding to four data words. One set of 36 digit drivers and sense amplifiers 
is commutated across the four sets of digit lines 
The 36 digits are  further divided into two groups 
address bits a re  decoded for the selection of one 

by decoding two address bits. 
of 18 bits each. Two additional 
18-bit half, the second 18-bit 
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half, or both. Selection of one from among the 1024 word coils is accomplished 
by a 32 x 32 diode decoding matrix. The remaining 10 address bits a re  decoded 
to control the diode matrix. 

During a read cycle, word current is pulsed through the selected word coil. 
The resulting sense voltage output developed on digit lines is coupled into the 
sense amplifier by the selected group of 18 or 36 commutation switches. The 
sense signal is amplified, discriminated, and then transmitted to the memory 
data register M. 

During a write cycle, digit current is switched on. It is positive or  nega- 
tive, depending upon "1" or "0" data input from M register. Digit current flows 
through the selected group of 18 or 36 commutation switches into the digit lines. 
While digit current is on, word current is pulsed through the selected word coils. 
At  those junctions in the memory matrix where digit and word currents coin- 
cide, information is written. 

In considering the electronic organization of the memory, emphasis has 
been placed on the use of integrated circuits. Logic gates, logic flip-flops, 
address decoder circuits, digit drivers, sense amplifiers, sense discriminators, 
and choppers a re  monolithic integrated circuits. Circuits such as  word drive 
switches, current sources, and power drivers a re  implemented with discrete 
or  hybrid circuits, since presently available monolithic circuits cannot meet 
current o r  voltage requirements. These discrete component circuits are  all 
transformer-coupled and are  normally biased off by the transformer short 
across the base-emitter junction of the transistor, so that none contributes to 
steady-state power dissipation. 

Theorv of Plated-Wire h e r a t i o n  

In writing, the word-drive current (I,) in the insulated wires  rotates the 
magnetization in the plated magnetic film from the easy toward the hard direc- 
tion as shown in Figure 3. Digit-drive current (I,,) in the plated wire then tilts 
the magnetization vector away from the hard direction. When the word current 
is removed, the magnetization vector rotates to the easy axis in the direction 
determined by the polarity of the digit-drive current. The two binary storage 
states consist of the two possible directions of the easy-axis magnetization, 
with selection made by the tilting effect of the digit current. The digit current 
is removed last. 

The memory is interrogated by pulsing the word lines. This signal rotates 
the magnetization in the plated wire toward the hard direction, inducing a volt- 
age in the plated wire which now serves a s  the sense line. The polarity of this 
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Figure 3. Memory Unit, Write-in Process 
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sense voltage is dependent upon the direction of the original easy-axis magnet- 
ization. 

In nondestructive readout operation, the magnetization vector rotation is 
limited so that it falls back to its original orientation upon conclusion of the 
interrogate read pulse. Data a re  retained through a read cycle. 

CIRCUITRY 

Integrated circuits will be used extensively in the on-board processor. 
Circui ts  selected for the engineering model are the Fairchild 9040 series, a 
low-power diode transistor logic (LPDTL) employing a +5-volt power supply. 
The logic is packaged in 14 lead ceramic flat packs, and will operate at speeds 
up to 2.5 MHz with power dissipations of 1 mw per gate (50 percent duty cycle) 
and 4 mw per flip-flop. These circuit elements are readily available and have 
one of the lowest power-speed products of any logic type presently available in 
large quantities from stock. The 9040 series, a standard line which has been 
in existence for approximately 2 years, is well established and has a good re- 
liability history. 

PACKAGING 

Engineering Model 

An engineering model of the C P U  and 1/0 units will contain small pluggable 
cards (1.2 by 4.4 inches) on which as many as 12 flat packs can be mounted. 
The flat packs a re  stacked two high, the top one rotated 90 degrees with respect 
to the one below it. Both packages are mounted 45 degrees with respect to true 
rectilinear for lead-access purposes. The printed circuit card contains a blade- 
type connector which mates with a split-type (tuning fork) female contact. The 
back end of the female connector consists of a wire-wrap post. The printed 
circuit cards are general purpose and all interconnections and intraconnections 
are performed on the backboard with an appropriate wire-wrap tool. The wiring 
lists will be prepared by computer and the wiring can be performed either under 
computer control o r  by hand. See Figure 4. 

Approximately 120 of these cards will be required to fabricate the CPU. 
The proposed configuration will be four rows of 30 cards each, with the cards 
on 0.3-inch centers. The connector panel will have slotted card guide assem- 
blies mounted into it and will be assembled into a housing with input/output con- 
nectors positioned at one end. 
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Figure 4. Engineering Model Packaging of CPU and I/O Units 

A discussion of the memory packaging will not be given here due to the sim- 
ilarity of the packaging concepts for the engineering model and flight units. 

Flight Model 

The final packaging configuration, excluding the memory, will use stacked 
array modules containing up to 12  flat packs each, a s  shown in Figure 5.  In a 
stacked array module, the flat packs a re  stacked on edge in a plastic comb-like 
header so that their leads project outward horizontally. Feed-through leads a re  
provided in the comb spacers. Interconnections a re  made by nickel ribbon, 
welded to the adjacent flat-pack leads or  spacer feed-throughs. The base of the 
header contains provisions for output leads. 
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Figure 5. Flight Packaging of CPU and 1/0 Uni ts  
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After the modules a re  assembled and tested, they are encapsulated in foam 
or  epoxy. The potted module is 1-1/2 by 1/2 by 1/2 inches in size. These mod- 
ules may be interconnected by various techniques such as double-sided plated- 
through-hole printed circuit boards, multilayer boards, or  welded backboards. 
The overall CPU package volume using one of the above techniques will be ap- 
proximately 144 cubic inches. The size of the 1/0 module is dependent upon the 
complexity of the mission, but generally it would occupy a volume equal to or 
less  than the CPU. 

J 

In regard to the memory unit, fabrication of engineering and qualification 
models will precede production of flight units. Flight units will have physical 
features identical to those of the qualification model and with present design 
plans, each 8K,18-bit (or 4K, 36-bit) memory package has dimensions of 7.7 by 
5.7 by 3 inches, and a total weight of 6.2 pounds. Not included in this package 
is the required power converter which would add approximately 20 percent to 
both weight and volume. However, a single power converter could provide 
power to several memory units and consequently total packaging can vary with 
overall system configuration. 

Figure 6 shows that the memory stack is composed of eight memory planes; 
each plane contains two mats of plated digit wire, woven with insulated word- 
select wires. The total stack is sandwiched between the wordcselect electronics 
assembly and a pair of digit-select assemblies. Each of these assemblies a re  
constructed with functional circuit modules which are  individually encapsulated 
and potted. With different module types containing different circuits, maximum 
packaging density causes a variation in module dimensions. Module height is 
maintained constant to yield an optimum set of dimensions for the total assem- 
bly. 
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Figure 6. Memory Packaging 
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